\(\int \sec ^2(c+d x) \sqrt {a+a \sin (c+d x)} \, dx\) [109]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 72 \[ \int \sec ^2(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=-\frac {\sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a+a \sin (c+d x)}}\right )}{\sqrt {2} d}+\frac {\sec (c+d x) \sqrt {a+a \sin (c+d x)}}{d} \]

[Out]

-1/2*arctanh(1/2*cos(d*x+c)*a^(1/2)*2^(1/2)/(a+a*sin(d*x+c))^(1/2))*a^(1/2)/d*2^(1/2)+sec(d*x+c)*(a+a*sin(d*x+
c))^(1/2)/d

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 72, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {2754, 2728, 212} \[ \int \sec ^2(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=\frac {\sec (c+d x) \sqrt {a \sin (c+d x)+a}}{d}-\frac {\sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {2} d} \]

[In]

Int[Sec[c + d*x]^2*Sqrt[a + a*Sin[c + d*x]],x]

[Out]

-((Sqrt[a]*ArcTanh[(Sqrt[a]*Cos[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sin[c + d*x]])])/(Sqrt[2]*d)) + (Sec[c + d*x]*Sq
rt[a + a*Sin[c + d*x]])/d

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2728

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, b*(C
os[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2754

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(-b)*(
g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(a*f*g*(p + 1))), x] + Dist[a*((m + p + 1)/(g^2*(p + 1))), Int
[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2,
0] && GtQ[m, 0] && LeQ[p, -2*m] && IntegersQ[m + 1/2, 2*p]

Rubi steps \begin{align*} \text {integral}& = \frac {\sec (c+d x) \sqrt {a+a \sin (c+d x)}}{d}+\frac {1}{2} a \int \frac {1}{\sqrt {a+a \sin (c+d x)}} \, dx \\ & = \frac {\sec (c+d x) \sqrt {a+a \sin (c+d x)}}{d}-\frac {a \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\frac {a \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{d} \\ & = -\frac {\sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a+a \sin (c+d x)}}\right )}{\sqrt {2} d}+\frac {\sec (c+d x) \sqrt {a+a \sin (c+d x)}}{d} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.21 (sec) , antiderivative size = 46, normalized size of antiderivative = 0.64 \[ \int \sec ^2(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=\frac {\operatorname {Hypergeometric2F1}\left (-\frac {1}{2},1,\frac {1}{2},\frac {1}{2} (1-\sin (c+d x))\right ) \sec (c+d x) \sqrt {a (1+\sin (c+d x))}}{d} \]

[In]

Integrate[Sec[c + d*x]^2*Sqrt[a + a*Sin[c + d*x]],x]

[Out]

(Hypergeometric2F1[-1/2, 1, 1/2, (1 - Sin[c + d*x])/2]*Sec[c + d*x]*Sqrt[a*(1 + Sin[c + d*x])])/d

Maple [A] (verified)

Time = 0.42 (sec) , antiderivative size = 83, normalized size of antiderivative = 1.15

method result size
default \(-\frac {\left (1+\sin \left (d x +c \right )\right ) \left (\sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a \sqrt {a -a \sin \left (d x +c \right )}-2 a^{\frac {3}{2}}\right )}{2 \sqrt {a}\, \cos \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}\, d}\) \(83\)

[In]

int(sec(d*x+c)^2*(a+a*sin(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/2/a^(1/2)*(1+sin(d*x+c))*(2^(1/2)*arctanh(1/2*(a-a*sin(d*x+c))^(1/2)*2^(1/2)/a^(1/2))*a*(a-a*sin(d*x+c))^(1
/2)-2*a^(3/2))/cos(d*x+c)/(a+a*sin(d*x+c))^(1/2)/d

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 159 vs. \(2 (61) = 122\).

Time = 0.28 (sec) , antiderivative size = 159, normalized size of antiderivative = 2.21 \[ \int \sec ^2(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=\frac {\sqrt {2} \sqrt {a} \cos \left (d x + c\right ) \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a \sin \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - \sin \left (d x + c\right ) + 1\right )} + 3 \, a \cos \left (d x + c\right ) - {\left (a \cos \left (d x + c\right ) - 2 \, a\right )} \sin \left (d x + c\right ) + 2 \, a}{\cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 2}\right ) + 4 \, \sqrt {a \sin \left (d x + c\right ) + a}}{4 \, d \cos \left (d x + c\right )} \]

[In]

integrate(sec(d*x+c)^2*(a+a*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/4*(sqrt(2)*sqrt(a)*cos(d*x + c)*log(-(a*cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a*sin(d*x + c) + a)*sqrt(a)*(cos(d*x
 + c) - sin(d*x + c) + 1) + 3*a*cos(d*x + c) - (a*cos(d*x + c) - 2*a)*sin(d*x + c) + 2*a)/(cos(d*x + c)^2 - (c
os(d*x + c) + 2)*sin(d*x + c) - cos(d*x + c) - 2)) + 4*sqrt(a*sin(d*x + c) + a))/(d*cos(d*x + c))

Sympy [F]

\[ \int \sec ^2(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=\int \sqrt {a \left (\sin {\left (c + d x \right )} + 1\right )} \sec ^{2}{\left (c + d x \right )}\, dx \]

[In]

integrate(sec(d*x+c)**2*(a+a*sin(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a*(sin(c + d*x) + 1))*sec(c + d*x)**2, x)

Maxima [F]

\[ \int \sec ^2(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=\int { \sqrt {a \sin \left (d x + c\right ) + a} \sec \left (d x + c\right )^{2} \,d x } \]

[In]

integrate(sec(d*x+c)^2*(a+a*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(a*sin(d*x + c) + a)*sec(d*x + c)^2, x)

Giac [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 102, normalized size of antiderivative = 1.42 \[ \int \sec ^2(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=\frac {\sqrt {2} {\left (\log \left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right ) \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) - \log \left (-\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right ) \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) - \frac {2 \, \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}{\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )}\right )} \sqrt {a}}{4 \, d} \]

[In]

integrate(sec(d*x+c)^2*(a+a*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

1/4*sqrt(2)*(log(sin(-1/4*pi + 1/2*d*x + 1/2*c) + 1)*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c)) - log(-sin(-1/4*pi +
1/2*d*x + 1/2*c) + 1)*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c)) - 2*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))/sin(-1/4*pi
+ 1/2*d*x + 1/2*c))*sqrt(a)/d

Mupad [F(-1)]

Timed out. \[ \int \sec ^2(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=\int \frac {\sqrt {a+a\,\sin \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^2} \,d x \]

[In]

int((a + a*sin(c + d*x))^(1/2)/cos(c + d*x)^2,x)

[Out]

int((a + a*sin(c + d*x))^(1/2)/cos(c + d*x)^2, x)